organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[4-(Piperidin-1-yl)piperidin-1-yl]benzonitrile

Guo-bin Xu, Jian-you Shi, Li-juan Chen and You-fu Luo*

State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China Correspondence e-mail: luo_youfu@scu.edu.cn

Received 9 November 2009; accepted 22 December 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.111; data-to-parameter ratio = 19.2.

In the title compound, $C_{17}H_{23}N_3$, both piperidine rings adopt chair conformations. In the crystal packing, intermolecular $C-H\cdots N$ hydrogen bonds and $C-H\cdots \pi$ interactions are present.

Related literature

For general background, see: Pevarello et al. (2006).

Experimental

Crvstal data

 $\begin{array}{l} C_{17}H_{23}N_3\\ M_r = 269.38\\ \text{Monoclinic, } P2_1/c\\ a = 10.090 \ (2) \ \text{\AA}\\ b = 11.100 \ (2) \ \text{\AA}\\ c = 13.446 \ (3) \ \text{\AA}\\ \beta = 100.72 \ (3)^\circ \end{array}$

 $V = 1479.7 (5) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 113 K 0.26 \times 0.25 \times 0.20 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\rm min} = 0.981, T_{\rm max} = 0.986$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 & 182 \text{ parameters} \\ wR(F^2) &= 0.111 & H\text{-atom parameters constrained} \\ S &= 1.12 & \Delta\rho_{\max} &= 0.27 \text{ e } \text{\AA}^{-3} \\ 3500 \text{ reflections} & \Delta\rho_{\min} &= -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

11970 measured reflections

 $R_{\rm int} = 0.032$

3500 independent reflections

2749 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C11-C16 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C6-H6\cdots Cg^{i}\\ C16-H16\cdots N3^{ii} \end{array}$	1.00 0.95	2.99 2.54	3.9363 (14) 3.3442 (16)	158 143
			. 1 . 1	

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Chem-BioDraw Ultra* CambridgeSoft (2008); software used to prepare material for publication: *SHELXL97*.

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2240).

References

CambridgeSoft (2008). ChemBioDraw Ultra. CambridgeSoft, England.

Pevarello, P., Fancelli, D., Vulpetti, A., Amici, R., Villa, M., Pittalà, V., Vianello, P., Cameron, A., Ciomei, M., Mercurio, C., Bischoff, J. R., Roletto, F., Varasi, M. & Brasca, M. G. (2006). *Bioorg. Med. Chem. Lett.* 16, 1084– 1090.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2010). E66, o284 [doi:10.1107/S160053680905507X]

4-[4-(Piperidin-1-yl)piperidin-1-yl]benzonitrile

G. Xu, J. Shi, L. Chen and Y. Luo

Comment

4-(4-(Piperidin-1-yl)piperidin-1-yl)benzonitrile are key intermediates which can be used to synthesize 3-aminopyrazole derivatives, which can be used as precursors for anticancer and anti-malarial agents. In the structure of the title molecule (Fig. 1) both piperidine rings are in a chair conformation. A crystal packing is dominated by van der Waals interactions (Fig. 2).

Experimental

A DMSO solution of 1-(piperidin-4-yl)piperidine (4.37 g, 0.01 mol) with 4-fluorobenzonitrile (1.21 g, 0.01 mol) was heated to reflux for 3 h, then water (50 ml) was added into the solution. The mixture was extracted with CH_2Cl_2 . After the solvent was removed a red crystalline powder was obtained; its recrystallisation from a methanol solution after 5 days yielded single crystals.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. The crystal packing of I dominated by van der Waals interactions.

4-[4-(Piperidin-1-yl)piperidin-1-yl]benzonitrile

C ₁₇ H ₂₃ N ₃	F(000) = 584
$M_r = 269.38$	$D_{\rm x} = 1.209 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4488 reflections
a = 10.090 (2) Å	$\theta = 2.7 - 27.9^{\circ}$
b = 11.100 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 13.446 (3) Å	<i>T</i> = 113 K
$\beta = 100.72 \ (3)^{\circ}$	Block, red
$V = 1479.7 (5) \text{ Å}^3$	$0.26\times0.25\times0.20~mm$
Z = 4	

Data collection

Rigaku Saturn CCD area-detector diffractometer	3500 independent reflections
Radiation source: rotating anode	2749 reflections with $I > 2\sigma(I)$
confocal	$R_{\rm int} = 0.032$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 2.8^\circ$
ω and ϕ scans	$h = -13 \rightarrow 10$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -14 \rightarrow 14$
$T_{\min} = 0.981, \ T_{\max} = 0.986$	$l = -17 \rightarrow 17$
11970 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0612P)^2 + 0.0668P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$
3500 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
182 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.033 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.19321 (8)	0.59022 (8)	0.73578 (6)	0.0193 (2)
N2	0.26675 (8)	0.49828 (7)	0.43659 (6)	0.0187 (2)
N3	0.48688 (9)	0.35177 (8)	0.00345 (7)	0.0256 (2)

C1	0.21163 (10)	0.49931 (10)	0.81631 (8)	0.0225 (2)
H1A	0.3069	0.4727	0.8304	0.027*
H1B	0.1547	0.4283	0.7934	0.027*
C2	0.17411 (11)	0.54896 (10)	0.91273 (8)	0.0270 (3)
H2A	0.2363	0.6154	0.9391	0.032*
H2B	0.1839	0.4848	0.9647	0.032*
C3	0.02945 (11)	0.59541 (11)	0.89283 (9)	0.0310 (3)
H3A	-0.0339	0.5270	0.8768	0.037*
H3B	0.0102	0.6360	0.9542	0.037*
C4	0.00956 (11)	0.68349 (11)	0.80492 (9)	0.0307 (3)
H4A	0.0638	0.7569	0.8249	0.037*
H4B	-0.0865	0.7074	0.7881	0.037*
C5	0.05156 (10)	0.62790 (11)	0.71205 (8)	0.0274 (3)
H5A	-0.0062	0.5573	0.6894	0.033*
H5B	0.0392	0.6875	0.6563	0.033*
C6	0.24849 (10)	0.54949 (9)	0.64737 (8)	0.0182 (2)
H6	0.3448	0.5272	0.6733	0.022*
C7	0.18209 (10)	0.43925 (9)	0.59102 (8)	0.0205 (2)
H7A	0.1816	0.3721	0.6394	0.025*
H7B	0.0873	0.4584	0.5608	0.025*
C8	0.25693 (10)	0.40038 (9)	0.50799 (8)	0.0204 (2)
H8A	0.3488	0.3734	0.5391	0.024*
H8B	0.2093	0.3313	0.4708	0.024*
С9	0.32454 (11)	0.60897 (9)	0.48736 (8)	0.0224 (2)
H9A	0.3206	0.6742	0.4366	0.027*
H9B	0.4206	0.5948	0.5172	0.027*
C10	0.25036 (11)	0.64891 (9)	0.56997 (8)	0.0229 (2)
H10A	0.1566	0.6711	0.5394	0.027*
H10B	0.2951	0.7211	0.6042	0.027*
C11	0.31345 (9)	0.46754 (9)	0.34801 (7)	0.0179 (2)
C12	0.32252 (10)	0.55520 (9)	0.27405 (8)	0.0209 (2)
H12	0.2976	0.6360	0.2849	0.025*
C13	0.36689 (10)	0.52613 (9)	0.18606 (8)	0.0212 (2)
H13	0.3727	0.5870	0.1374	0.025*
C14	0.40341 (10)	0.40774 (9)	0.16801 (8)	0.0182 (2)
C15	0.39452 (10)	0.31974 (9)	0.24037 (8)	0.0203 (2)
H15	0.4191	0.2390	0.2289	0.024*
C16	0.35023 (10)	0.34886 (9)	0.32857 (8)	0.0205 (2)
H16	0.3445	0.2876	0.3770	0.025*
C17	0.45003 (10)	0.37726 (9)	0.07679 (8)	0.0200 (2)
· · · ·				
Atomic displaceme	nt parameters (A^2)			

 U^{22}

0.0234 (5)

0.0146 (4)

0.0195 (5)

0.0248 (5)

 U^{33}

0.0162 (4)

0.0169 (4)

0.0252 (5)

0.0194 (5)

 U^{11}

N1 N2

N3

C1

0.0189 (4)

0.0253 (4)

0.0337 (5)

0.0240 (5)

supplementary materials

 U^{23}

-0.0006 (3)

-0.0002 (3)

-0.0025 (4)

0.0015 (4)

 U^{13}

0.0049 (3)

0.0060 (3)

0.0101 (4)

0.0053 (4)

 U^{12}

0.0020 (3)

-0.0026 (3)

-0.0013 (4)

0.0000 (4)

supplementary materials

C2	0.0287 (6)	0.0343 (6)	0.0190 (6)	-0.0034 (5)	0.0071 (4)	-0.0014 (5)
C3	0.0272 (6)	0.0414 (7)	0.0273 (6)	-0.0046 (5)	0.0127 (5)	-0.0073 (5)
C4	0.0237 (5)	0.0400 (7)	0.0300 (6)	0.0065 (5)	0.0085 (5)	-0.0051 (5)
C5	0.0215 (5)	0.0370 (6)	0.0237 (6)	0.0071 (5)	0.0044 (4)	-0.0020 (5)
C6	0.0183 (5)	0.0197 (5)	0.0170 (5)	0.0005 (4)	0.0045 (4)	-0.0008 (4)
C7	0.0226 (5)	0.0200 (5)	0.0196 (5)	-0.0024 (4)	0.0058 (4)	0.0011 (4)
C8	0.0272 (5)	0.0160 (5)	0.0189 (5)	-0.0022 (4)	0.0069 (4)	0.0008 (4)
C9	0.0287 (5)	0.0187 (5)	0.0210 (5)	-0.0062 (4)	0.0076 (4)	-0.0031 (4)
C10	0.0315 (6)	0.0177 (5)	0.0212 (6)	-0.0024 (4)	0.0094 (4)	-0.0023 (4)
C11	0.0178 (5)	0.0183 (5)	0.0170 (5)	-0.0011 (4)	0.0018 (4)	-0.0009 (4)
C12	0.0263 (5)	0.0161 (5)	0.0209 (5)	0.0028 (4)	0.0059 (4)	0.0000 (4)
C13	0.0268 (5)	0.0187 (5)	0.0185 (5)	0.0012 (4)	0.0054 (4)	0.0027 (4)
C14	0.0196 (5)	0.0181 (5)	0.0171 (5)	-0.0009 (4)	0.0033 (4)	-0.0014 (4)
C15	0.0238 (5)	0.0164 (5)	0.0205 (6)	0.0007 (4)	0.0033 (4)	-0.0017 (4)
C16	0.0253 (5)	0.0170 (5)	0.0187 (5)	-0.0007 (4)	0.0031 (4)	0.0011 (4)
C17	0.0236 (5)	0.0145 (5)	0.0216 (6)	-0.0012 (4)	0.0038 (4)	0.0000 (4)

Geometric parameters (Å, °)

N1—C5	1.4663 (13)	С6—Н6	1.0000
N1—C1	1.4664 (13)	С7—С8	1.5219 (14)
N1—C6	1.4749 (13)	С7—Н7А	0.9900
N2—C11	1.4020 (13)	С7—Н7В	0.9900
N2—C8	1.4656 (13)	C8—H8A	0.9900
N2—C9	1.4723 (13)	C8—H8B	0.9900
N3—C17	1.1520 (13)	C9—C10	1.5164 (14)
C1—C2	1.5200 (14)	С9—Н9А	0.9900
C1—H1A	0.9900	С9—Н9В	0.9900
C1—H1B	0.9900	C10—H10A	0.9900
C2—C3	1.5241 (16)	C10—H10B	0.9900
C2—H2A	0.9900	C11—C16	1.4063 (14)
C2—H2B	0.9900	C11—C12	1.4064 (14)
C3—C4	1.5183 (17)	C12—C13	1.3788 (14)
С3—НЗА	0.9900	C12—H12	0.9500
С3—Н3В	0.9900	C13—C14	1.3981 (14)
C4—C5	1.5220 (15)	С13—Н13	0.9500
C4—H4A	0.9900	C14—C15	1.3933 (14)
C4—H4B	0.9900	C14—C17	1.4335 (14)
С5—Н5А	0.9900	C15—C16	1.3811 (14)
С5—Н5В	0.9900	C15—H15	0.9500
C6—C10	1.5195 (14)	C16—H16	0.9500
C6—C7	1.5269 (14)		
C5—N1—C1	109.98 (8)	С8—С7—Н7А	109.4
C5—N1—C6	114.29 (8)	С6—С7—Н7А	109.4
C1—N1—C6	111.67 (8)	С8—С7—Н7В	109.4
C11—N2—C8	116.77 (8)	С6—С7—Н7В	109.4
C11—N2—C9	115.49 (8)	H7A—C7—H7B	108.0
C8—N2—C9	112.59 (8)	N2—C8—C7	111.93 (8)
N1—C1—C2	111.27 (9)	N2—C8—H8A	109.2

N1—C1—H1A	109.4	С7—С8—Н8А	109.2
C2—C1—H1A	109.4	N2—C8—H8B	109.2
N1—C1—H1B	109.4	С7—С8—Н8В	109.2
C2—C1—H1B	109.4	H8A—C8—H8B	107.9
H1A—C1—H1B	108.0	N2-C9-C10	112.14 (8)
C1—C2—C3	110.81 (9)	N2—C9—H9A	109.2
C1—C2—H2A	109.5	С10—С9—Н9А	109.2
С3—С2—Н2А	109.5	N2—C9—H9B	109.2
C1—C2—H2B	109.5	С10—С9—Н9В	109.2
C3—C2—H2B	109.5	Н9А—С9—Н9В	107.9
H2A—C2—H2B	108.1	C9—C10—C6	111.10 (8)
C4—C3—C2	109.76 (9)	C9—C10—H10A	109.4
С4—С3—Н3А	109.7	C6—C10—H10A	109.4
С2—С3—НЗА	109.7	C9—C10—H10B	109.4
C4—C3—H3B	109.7	C6—C10—H10B	109.4
С2—С3—Н3В	109.7	H10A—C10—H10B	108.0
НЗА—СЗ—НЗВ	108.2	N2-C11-C16	121.86 (9)
C3—C4—C5	111.16 (10)	N2-C11-C12	120.57 (9)
C3—C4—H4A	109.4	C16—C11—C12	117.55 (9)
С5—С4—Н4А	109.4	C13—C12—C11	121.27 (9)
C3—C4—H4B	109.4	C13—C12—H12	119.4
C5—C4—H4B	109.4	C11—C12—H12	119.4
H4A—C4—H4B	108.0	C12—C13—C14	120.46 (9)
N1—C5—C4	110.24 (9)	C12—C13—H13	119.8
N1—C5—H5A	109.6	C14—C13—H13	119.8
C4—C5—H5A	109.6	C15—C14—C13	118.98 (9)
N1—C5—H5B	109.6	C15—C14—C17	120.39 (9)
C4—C5—H5B	109.6	C13—C14—C17	120.63 (9)
H5A—C5—H5B	108.1	C16—C15—C14	120.57 (9)
N1—C6—C10	112.59 (8)	C16—C15—H15	119.7
N1—C6—C7	116.67 (8)	C14—C15—H15	119.7
C10—C6—C7	107.60 (8)	C15—C16—C11	121.17 (9)
N1—C6—H6	106.4	C15—C16—H16	119.4
С10—С6—Н6	106.4	C11—C16—H16	119.4
С7—С6—Н6	106.4	N3—C17—C14	179.37 (11)
C8—C7—C6	111.06 (8)		
C5—N1—C1—C2	-60.67 (11)	N2—C9—C10—C6	56.38 (12)
C6—N1—C1—C2	171.35 (8)	N1—C6—C10—C9	172.41 (8)
N1—C1—C2—C3	56.80 (12)	C7—C6—C10—C9	-57.65 (11)
C1—C2—C3—C4	-52.73 (12)	C8—N2—C11—C16	-0.48 (13)
C2—C3—C4—C5	53.76 (12)	C9—N2—C11—C16	135.34 (10)
C1—N1—C5—C4	60.92 (12)	C8—N2—C11—C12	178.25 (9)
C6—N1—C5—C4	-172.56 (9)	C9—N2—C11—C12	-45.93 (12)
C3—C4—C5—N1	-58.25 (12)	N2-C11-C12-C13	-179.30 (9)
C5—N1—C6—C10	63.26 (11)	C16—C11—C12—C13	-0.52 (14)
C1—N1—C6—C10	-171.10 (8)	C11—C12—C13—C14	0.37 (15)
C5—N1—C6—C7	-61.87 (12)	C12—C13—C14—C15	-0.13 (15)
C1—N1—C6—C7	63.77 (11)	C12—C13—C14—C17	-179.78 (9)
N1—C6—C7—C8	-174.76 (8)	C13—C14—C15—C16	0.05 (15)

supplementary materials

C10—C6—C7—C8	57.63 (11)	C17—C14—C15—C16	179.70 (9)
C11—N2—C8—C7	-169.71 (8)	C14—C15—C16—C11	-0.21 (15)
C9—N2—C8—C7	53.24 (11)	N2-C11-C16-C15	179.21 (9)
C6—C7—C8—N2	-56.30 (11)	C12-C11-C16-C15	0.44 (15)
C11—N2—C9—C10	169.02 (8)	C15-C14-C17-N3	38 (9)
C8—N2—C9—C10	-53.35 (11)	C13-C14-C17-N3	-142 (9)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ri	ng.			
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C6—H6…Cg ⁱ	1.00	2.99	3.9363 (14)	158
C16—H16…N3 ⁱⁱ	0.95	2.54	3.3442 (16)	143
Symmetry codes: (i) $-x+1, -y+1, -z+1;$	(ii) $x, -y+1/2, z+1/2$.			

Fig. 2

